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Abstract. A general framework is given for deriving the jump rate distribution function and the
long-time behaviour of the waiting time distribution for the jump is shown to be a power-law
function whose exponent is related to the contribution of fast modes relative to that of slow modes
in the density fluctuation. A unified explanation for the vitrification process and glass transition
singularities is presented.

1. Introduction

Understanding of the glass transition remains one of the most important unsolved problems
in condensed matter physics and many reported experimental, theoretical and computational
studies have been carried out with the aim of elucidating the solidification process of atoms
in the glass transition. Extensive molecular dynamics simulations [1] have revealed that the
diffusive dynamics in a supercooled fluid is separated into jump motion and localized stochastic
motion and the jump motion is believed to be responsible for the slow dynamics. Odagaki [2]
showed that the jump rate distribution behaves as

P(w) ∼ wα (1)

which gives rise to the power-law decay of the waiting time distribution

ψ(t) ∼ t−(α+2) (t → ∞) (2)

and proposed a unified view for dynamical singularities based on the divergence of the moments
of the waiting time distribution. From the comparison of the results from the trapping diffusion
model [3] and experiments, it was concluded that (i) α = −1 corresponds to the Vogel–
Fulcher temperature, (ii) α = 0, where the mean waiting time diverges, is the glass transition
temperature and (iii) a crossover is expected at α = 1. Furthermore, by exploiting the Adam–
Gibbs approach and the chemical rate theory, the parameter α was related to the excess entropy
SC(T ):

α = [T SC(T )− TgSC(Tg)]/TgSC(Tg). (3)

It is interesting to note that for a class of fragile glass formers the specific heat just above the
glass transition temperature is scaled by α [4].

Götze [5] has proposed the mode coupling theory (MCT) for the dynamics of supercooled
liquids and predicted that an ergodic-to-non-ergodic transition occurs at a certain critical
temperature TC . The critical temperature is now believed to be much higher than the glass
transition temperature. The most important prediction of the MCT is the appearance of different

0953-8984/00/296509+06$30.00 © 2000 IOP Publishing Ltd 6509



6510 T Odagaki and A Yoshimori

timescales which distinguish fast and slow processes. In view of the success of the MCT in
describing the dynamics in supercooled liquids, it is tempting to ask whether one can relate
the frozen density fluctuation predicted by the MCT and the jump rate distribution and devise
a unified concept for the vitrification process.

The aim of the present report is to present a general framework for the microscopic
derivation of the jump rate distribution. To this end we employ a theory developed for chemical
reactions [6] and show that the jump rate distribution becomes a power-law function in the
small-jump-rate limit. In section 2, the general framework is presented. We obtain the jump
rate distribution in section 3 utilizing the surrogate approximation and the Gaussian distribution
of the density fluctuation. In section 4, the unified view for the vitrification process is discussed.

2. Basic formalism

It is now widely believed, from molecular dynamics simulations [1], that the relaxation process
in supercooled liquids is split into fast and slow processes and that the latter is observed as a
jump motion. When one identifies a jump motion of an atom or a group of atoms, one considers
that during the jump process other atoms are localized—that is, the jump time is considered
to be negligible compared to other characteristic times.

The jump motion occurs when the surrounding atoms produce a configuration (transition
state) such that the energy of the initial state is equal to that of the final state. Thus, exploiting
the theory of chemical reaction [6], we can write the average jump rate as

w̄ ∝ νA
(∫

d�′ δ(HI −HF )e−βHI

)/(∫
d�′ e−βHI

)
(4)

whereHI andHF denote the energy of the system before and after a jump motion, respectively,
and β−1 = kBT is the temperature multiplied by the Boltzmann constant. The integration is
performed in the phase space spanned by coordinates other than those of atoms making the
jump. The physical meaning of equation (4) is that the average jump rate is proportional to
the total probability that the energy of the system is HI under the condition of the transition
state. Figure 1 illustrates this process schematically.
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Figure 1. A schematic illustration of a jump process.

The density fluctuations of surrounding atoms which produce the transition state decay
at various rates, and it is natural to assume that modes with characteristic time longer than
the inverse of the attempt frequency νA are frozen and other modes are not. We introduce the
basic assumption for the jump that the energy difference �H ≡ HI − HF can be written as
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the sum of two contributions; one is the contribution of fast modes �Hf and the other is that
of slow modes �Hs . Then, equation (4) can formally be written as

w̄ =
∫
w(x)�(x) dx (5)

where

�(x) =
(∫

d�′ δ(�Hs − x)e−βHI

)/(∫
d�′ e−βHI

)
(6)

and

w(x) = A

�(x)

(∫
d�′ δ(�Hs − x)δ(�Hf + x)e−βHI

)/(∫
d�′ e−βHI

)
. (7)

Equation (5) indicates that the average jump rate is given by an average of the conditional
jump rate w(x) over the distribution function �(x). Therefore the jump rate distribution is
given by

P(w) = �(x−1(w))

∣∣∣∣ dx

dw

∣∣∣∣. (8)

It is apparent from this formalism that the jump rate distribution originates from the fact that
the jump occurs in various configurations of the slow modes.

3. Surrogate approximation and jump rate distribution

In order to evaluate the jump rate distribution, we write the energy difference in terms of the
density function as

�H =
∫

[V (r − rI )− V (r − rF )]ρ(r) dr (9)

where rI and rF represent symbolically the positions of atoms making the jump motion before
and after the jump, ρ(r) is the conditional density function of the other atoms, which is assumed
to be the same before and after the jump, and V is the potential energy between jumping atoms
and the rest of atoms. Introducing the Fourier transform

ρ(r) =
∑

q

ρq (10)

and assuming that the slow and fast modes can be distinguished in q-space, we can write

�Hf =
∑
F.M.

�V−qρq (11)

�Hs =
∑
S.M.

�V−qρq (12)

where�Vq is the Fourier transform ofV (r−rI )−V (r−rF ) and F.M. and S.M. denote fast and
slow modes, respectively. Furthermore, we employ an approximation in which the potential
energy is replaced by the direct correlation function (the surrogate approximation [7–9]):

V (r) = C(r) (13)

and the Boltzmann factor is replaced by the Gaussian distribution in density∫
d�′ e−βHI · · · =

∫ ∏
q

dρq · · · exp

(
−

∑
q

|ρq − ρ0
q |2

2Sq

)
(14)
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where Sq is the structure factor, ρ0
q and ρq are the densities of the average and temporal config-

urations, respectively. The replacement by the Gaussian distribution is equivalent to making
the linear response approximation, and the surrogate approximation is employed to include
nonlinear effects. The approximations were shown to be successful in the analysis of solvation
dynamics [7–10].

Since the Boltzmann factor is factorized in equation (14), equation (7) can be simplified
as follows:

w(x) =
[
A

∫ ∏
F.M.

dρq δ(�Hf + x) exp

(
−

∑
F.M.

|ρq − ρ0
q |2

2Sq

)]

×
[∫ ∏

F.M.

dρq exp

(
−

∑
F.M.

|ρq − ρ0
q |2

2Sq

)]−1

(15)

�(x) =
[∫ ∏

S.M.

dρq δ(�Hs − x) exp

(
−

∑
S.M.

|ρq − ρ0
q |2

2Sq

)]

×
[∫ ∏

S.M.

dρq exp

(
−

∑
S.M.

|ρq − ρ0
q |2

2Sq

)]−1

. (16)

It is tedious but straightforward [11] to show by calculation that

w(x) ∝ exp

[
− 1

4λf
(λf + x)2

]
(17)

and

�(x) ∝ exp

[
− 1

4λs
(λs − x)2

]
. (18)

Here, λf and λs are defined by

λf =
∑
F.M.

Sq|CIq − CFq |2
2

(19)

λs =
∑
S.M.

Sq|CIq − CFq |2
2

(20)

where CIq and CFq are the Fourier transforms of the direct correlation function before and after
the jump, respectively.

Eliminating x from equations (17) and (18), we can obtain the jump rate distributionP(w)
and show that in the limit of w → 0, P(w) behaves as

P(w) ∝ wλf /λs−1 (21)

where an unimportant term proportional to lnw is neglected.

4. Waiting time distribution and glass transition singularities

According to the unified view given by Odagaki [2], the glass transition singularities can be
understood from the divergence of the various moments of the waiting time distribution of a
jump which is defined by

ψ(t) =
∫
we−wtP (w) dw. (22)
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The singularity of moments of the waiting time distribution is determined by the long-time
behaviour of the waiting time distribution. It is easy to show from equation (21) that  (t)
behaves as

 (t) ∼ t−(λf /λs+1). (23)

Thus in the present theory, the glass transition point is given [2] by

λf

λs
= 1. (24)

Similarly, the Vogel–Fulcher point and a crossover point are given by λf = 0 and λf /λs = 2,
respectively.

5. Discussion

We have presented a general framework for derivation of the jump rate distribution. According
to molecular dynamics simulations [1], the diffusive dynamics in supercooled liquids changes
its nature at a certain temperature and a description based on the jump motion becomes possible.
This means that for a theory which does not include the jump motion the system will appear
frozen. Since the relaxation time τq depends on the wavenumber, it is natural to assume that
modes can be classified into fast and slow modes by the wavenumber as we have done in this
paper. The present mode coupling theory [5] discusses the divergence of the relaxation time
or the disappearance of diffusion on the basis of the basic equation without jump motions
and predicts the divergence to occur at a critical temperature independent of the wavenumber.
The view from the MCT suggests that modes whose relaxation time exceeds the inverse of
the attempt frequency can be considered as frozen in the jump process. Once the existence of
fast and slow modes is accepted, then the jump rate distribution can be shown to behave as a
power-law function for the small-jump-rate limit as we have seen in this paper, and the glass
transition singularities are related to the divergence of various moments of the waiting time
distribution, following the argument of the trapping diffusion model [2]. Therefore, we now
have a unified description of the vitrification process and the glass transition singularities on
the basis of a microscopic model.

To understand the separation of slow and fast modes, let us consider the relaxation in
liquids where the relaxation time is ∼(Dq2)−1, D being the diffusion constant. Thus, if the
attempt frequency is νA and the diffusion constant expected for the dynamics without jumps is
denoted byD, then qC ∼ √

νA/D is a rough estimate of the demarcation wavenumber, where
the slow and fast modes at a given temperature are classified as having q < qC or q � qC .
In fact, on this assumption, we can obtain the glass transition point by analysing the structure
factor. We will report an analysis for the hard-sphere system elsewhere [11].

It should be remarked here that the relaxation time may not be a monotonic function
of the wavenumber and thus one might need more careful analysis of the relaxation time to
distinguish slow and fast modes.

The remaining problem is that of whether the thermodynamic anomalies can be understood
in the same framework. It is very encouraging to see that the specific heat of a class of fragile
glass formers can be scaled by α defined in equation (3). Therefore, it is plausible to expect the
same framework to also explain the thermodynamic singularities, which will be an important
future problem.
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